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(57) ABSTRACT
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and interpolation followed by an edge detection algorithm to
recognize the areas that contribute mostly to the estimation
error dueto the interpolation. The pixels on the detected edges
and around their vicinity are also measured, and an aging
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entire measured set of data for the initially measured pixels as
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error is reduced particularly in the presence of aging patterns
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and linear interpolation
Final linear interpolation based on 25.03%
measurement of all pixels
RMS error percentage = 1.2276%

Initial measurement with rate 1/4 x 1/4
RMS error percentage = 11.1012%

FIG. 6

Sample original image
Expanded detected edges by canny method
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RE-INTERPOLATION WITH EDGE
DETECTION FOR EXTRACTING AN AGING
PATTERN FOR AMOLED DISPLAYS

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 61/783,537, filed Mar. 14, 2013,
entitled “Re-Interpolation with Edge Detection for Extracting
an Aging Pattern for Amoled Displays™ which is hereby
incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present disclosure generally relates to circuits for use
in displays, and methods of estimating or extracting aging
patterns of displays, particularly displays such as active
matrix organic light emitting diode displays.

BACKGROUND

Displays can be created from an array of light emitting
devices each controlled by individual circuits (i.e., pixel cir-
cuits) having transistors for selectively controlling the cir-
cuits to be programmed with display information and to emit
light according to the display information. Thin film transis-
tors (“TFTs”) fabricated on a substrate can be incorporated
into such displays. TFTs tend to demonstrate non-uniform
behavior across display panels and over time as the displays
age. Compensation techniques can be applied to such dis-
plays to achieve image uniformity across the displays and to
account for degradation in the displays as the displays age.

Consider an active matrix organic light-emitting device
(AMOLED) display with N rows and N~ columns of pixels.
Let Matrix X of size NyxN. represent the V shift or the
mobility index of the pixels across the screen. The problem is
to estimate Matrix X with the minimum number of pixel
measurement. Matrix X is used to adjust the input voltage of
each individual pixel (compensation) to have a uniform inten-
sity for all pixels of the screen.

There is a need to minimize the number of measurements to
reduce the time interval required for non-uniformity compen-
sation. This saving in time further allows repeating the same
measurement multiple times to reduce the variance of the
additive noise by averaging.

SUMMARY

The foregoing and additional aspects and embodiments of
the present disclosure will be apparent to those of ordinary
skill in the art in view of the detailed description of various
embodiments and/or aspects, which is made with reference to
the drawings, a brief description of which is provided next.

According to an aspect of the present disclosure, a method
of'identifying on a display having pixels that are aging due to
shifts in one or more aging characteristics of a current-driven
component in each of the pixels, comprising the acts of:
measuring, using a measurement circuit, an aging character-
istic of some but not all pixels in a first region of the display
using a down-sampling rate of K, xK,,, such that the aging
characteristic of at least every K ;th pixel is measured along a
column of the first region and the aging characteristic of at
least every K th pixel is measured along a row of the first
region, to produce a set of initial pixel measurements. In an
aspect, the first region covers almost all of the pixels on the
display except for a few rows at the bottom and a few columns
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on the right side of the display. In another aspect, the first
region covers all of the pixels of the display. K- and K, are
positive integers that are identical or mutually distinct. The
method further includes: interpolating the set of initial pixel
measurements to produce an initial aging pattern for the first
region; storing, in a memory device, the initial aging pattern;
locating in the initial aging pattern using an edge detection
algorithm an edge corresponding to a discontinuity in pixel
intensity; measuring, using the measurement circuit, the
aging characteristic of those of the pixels along the located
edge in the initial aging pattern that were not measured in the
first region to produce a set of edge measurements; applying
ascattered interpolation algorithm using the set of initial pixel
measurements and the set of edge measurements to produce a
refined aging pattern of the first region; and storing an indi-
cation of the refined aging pattern in the memory device.

The method can further include measuring, using the mea-
surement circuit, the aging characteristic of every K, th pixel
located in the last row of the display and of every K th pixel
located in the last column of the display to include with the set
of initial pixel measurements.

The method can further include, if the aging characteristic
of'the pixel located in the last column and in the last row of the
display has not been measured so as to appear in the set of
initial pixel measurements, measuring, using the measure-
ment circuit, the aging characteristic of the pixel located in the
last column and in the last row of the display to include with
the set of initial pixel measurements.

The method can further include: further measuring, using
the measurement circuit, the aging characteristic of at least
some ofthe K, pixels horizontally and at least some ofthe K-
pixels vertically from the located edge in the first region to
produce a set of additional edge measurements; and adding
the set of additional edge measurements to the set of edge
measurements. The applying the scattered interpolation algo-
rithm can be further based on the set of additional edge
measurements.

The further measuring can include measuring the aging
characteristic of at least every unmeasured pixel defined by a
block having a size of at least (K+1)(K+1), starting at an
initial pixel along the located edge and including these further
measured pixels in the set of additional edge measurements.

The further measuring can include measuring the aging
characteristic of at least every one of the next K ,,unmeasured
pixels located on the same row following the adjacent initial
pixel along the located edge and of at least every one of the
next K, unmeasured pixels located on the same column fol-
lowing the adjacent initial pixel and including these further
measured pixels in the set of additional edge measurements.

The method can further include stopping the further mea-
suring when an already measured pixel from the set of initial
pixel measurements is encountered along the row or the col-
umn of the initial pixel.

The indication of the refined aging pattern can be an esti-
mation matrix corresponding to the pixel resolution of the
display, wherein the pixel resolution corresponds to a number
N of rows and anumber N of columns of pixels forming the
display.

Each value in the estimation matrix can correspond to an
amount by which the pixel corresponding to the row and the
column where the value appears in the matrix is aging such
that a compensation value is applied to increase a pro-
grammed brightness for the pixel to compensate for the aging
amount.

The aging characteristic can be related to a shift in a thresh-
old voltage of a drive transistor that drives a light emitting
device in each of the pixels, or a change in a voltage across the
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light emitting device in each of the pixels, or a change in a
drive current of the drive transistor needed to cause the light
emitting device in each of the pixels to emit a programmed
brightness, or a change in a current of the light emitting device
needed to emit a programmed brightness.

Each of the pixels can include a light emitting device and a
drive transistor that drives the light emitting device with a
current corresponding to a programmed brightness emitted
by the light emitting device.

The first region can span the entire display or nearly all of
the entire display. When the first region spans most but not the
entire display, there can be one to three additional disjoint
regions that together with the first region span the entire
display. For example, a second region can include a thin
vertical region comprising the first few columns on the right
side of the display. A third region can include the bottom few
rows on the bottom of the display. A fourth region can include
a small rectangular region comprising a few pixels on the
bottom right hand side of the display. Depending on the size
ofthe display, NzxN, and the down-sampling rate, K ,xK,
there may be only one region (a first region), or one to three
additional regions.

The interpolating the set of initial pixel measurements can
estimate aging values of pixels that were not measured in the
first region due to the down-sampling rate.

The edge detection algorithm can be a Canny edge detec-
tion algorithm.

K;-can be 2 or 4 or any other positive integer, and K, can
be 2, 3, or 4 or any other positive integer.

No more than 50% of all the pixels in the display can be
measured to produce the initial aging pattern, or no more than
25% of all the pixels in the display can be measured to
produce the initial aging pattern. The number of pixels that
are initially measured depends on the down-sampling rate.
For example, if K,=K =2, almost 25% of all the pixels in the
display are initially measured. As another example, if
K,=K =4, only Vis of all the pixels are initially measured.

The method can further include: measuring, using the mea-
surement circuit, the aging characteristic of some but not all
pixels in a second region of the display, to include with the set
of initial pixel measurements, the first region and the second
region being disjoint, wherein the interpolating produces the
initial aging pattern for the first region and the second region.
The edge detection algorithm is run on the entire display to
locate edges

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the disclosure will
become apparent upon reading the following detailed
description and upon reference to the drawings.

FIG. 1 shows ablock diagram of the algorithm according to
an aspect of the present disclosure.

FIG. 2 shows results of simulated chess aging patterns of
size 6x10

FIG. 3 shows results of simulated chess aging patterns of
size 24x40

FIG. 4 illustrates the performance of the algorithm for a
random intensity chess pattern of size 6x10 blocks.

FIG. 5 illustrates the results of the same simulation when
the random intensity chess pattern of size 24x40 is consid-
ered.

FIG. 6 illustrates the performance of the algorithm on the
diamond aging pattern of size 6x10.

FIG. 7 illustrates the performance of the algorithm on the
random intensity diamond pattern of size 6x10.
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FIG. 8 illustrates V initial non-uniformities for Red,
Green, and Blue colors of an AMOLED display of size 512x
648.

FIG. 9 shows the performance of the algorithm on the
random intensity chess pattern with background real initial
non-uniformity for red color.

FIG. 10 shows the performance of the algorithm on the
random intensity chess pattern with background real initial
non-uniformity for green color.

FIG. 11 shows the performance of the algorithm on the
random intensity chess pattern with background real initial
non-uniformity for blue color.

FIG. 12 shows the performance of the algorithm on the
random intensity diamond pattern with the background of
real initial non-uniformity for red color.

FIG. 13 shows the performance of the algorithm on the
random intensity diamond pattern with the background of
real initial non-uniformity for green color.

FIG. 14 shows the performance of the algorithm on the
random intensity diamond pattern with the background of
real initial non-uniformity for blue color.

While the present disclosure is susceptible to various modi-
fications and alternative forms, specific embodiments have
been shown by way of example in the drawings and will be
described in detail herein. It should be understood, however,
that the disclosure is not intended to be limited to the particu-
lar forms disclosed. Rather, the disclosure is to cover all
modifications, equivalents, and alternatives falling within the
spirit and scope of the invention as defined by the appended
claims.

DETAILED DESCRIPTION

While particular embodiments and applications of the
present disclosure have been illustrated and described, it is to
be understood that the disclosure is not limited to the precise
construction and compositions disclosed herein and that vari-
ous modifications, changes, and variations can be apparent
from the foregoing descriptions without departing from the
spirit and scope of the invention as defined in the appended
claims.

The aging pattern of a screen or display is highly spatially
correlated. For displays having low correlated or uncorrelated
aging patterns, most or even all of the pixels need to be
measured to ascertain their aging characteristic. However,
due to high spatial correlation, the aging pattern of the display
can be estimated from measuring a proper subset of all pixels
in the display. The present disclosure presents a class of
approaches that are based on pixel measurement. An algo-
rithm which is easy to implement and works based on mea-
suring a non-uniform subset of pixels to estimate the aging
pattern of the display is presented.

Referring to FIG. 1, an algorithm starts with an initial
uniform (by uniform, it is meant that a regular or uniform
pattern of pixels are measured) measurement of a character-
istic (e.g., aging) of the pixels with a specific down-sampling
rate K, <K, such as for example 4x4, which means that the
aging characteristic of the pixel in every 4% row and every 4"
column is measured while other pixels in each 4x4 block of
pixels are not measured in this initial uniform measurement of
the algorithm 100 (102). Assuming a high spatial correlation,
a coarse aging pattern of the entire display (including non-
measured pixels) is obtained by interpolating the measured
data (104). Most of the error due to interpolation can happen
at or near the vicinity of the edges where image brightness
levels change abruptly. Accordingly, an edge detection algo-
rithm is run to detect the edges where sudden brightness
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levels occur (106). Then, the aging pattern is further refined
by making extra pixel measurements at or around the detected
edges (108) and then re-interpolating the measured aging data
across the entire display (110).

An initial pixel measurement is performed with the down-
sampling rate of K x ;. Starting from a corner of the display
(e.g., the upper-left corner) with the coordinate (0,0), the
pixels located at integer multiples (e.g., 4) of the vertical and
horizontal parameters of the down-sampling rate are mea-
sured. Depending on the size of the display and the selected
down-sampling rate, a few last rows (n,<K,) and a few last
columns (n.<K) of the pixels may not be measured during
this initial pixel measurement using the selected down-sam-
pling rate. Prior to interpolating for all the pixels of the
display, aging characteristics of the pixels at the very last row
and the very last column of the display are measured with the
same down-sampling rates K, and K ,, respectively. The pixel
at the location corresponding to the bottom right of the dis-
play (N,, N.) can also be measured as part of the initial
measurement. The aging characteristics of the measured pix-
els are stored as a set of initial pixel measurements in a
memory device. The parameters of the down-sampling rate,
K,-and K, are integers and can be identical (e.g., 2x2 or 4x4)
or mutually distinct (e.g., 2x4).

Depending on the size of the display and the selected
down-sampling rate K, xK,, the display can be (at most)
divided to four disjoint (distinct) regions to which the initial
uniform measurement is applied. This is due to the fact that
the coordinates of the last row and the last column of pixels
may not be integer factors of the selected down-sampling rate,
and, so they can be measured separately. If the measurement
is started from the upper-left corner of the screen, for
example, these regions are located at the upper left, lower left,
upper right, and the lower right parts of the display, respec-
tively. In each region, a grided interpolation algorithm is run
to estimate the unknown entries of the matrix X, which again
has a size corresponding to the pixel resolution of the display
and where the known entries correspond to the measured
characteristics, and the unknown entries are interpolated.

Various conventional methods of interpolation such as
“nearest neighbor,” “linear,” “cubic,” or “spline” can be used.
In case that cubic or spline interpolation methods are
deployed, the interpolated data in region 1 can be used to
provide extra data needed to complete interpolation in regions
2 and 3. Similarly, the interpolated data in regions 1, 2, and 3
can be used to complete the interpolation in region 4. Alter-
natively, the pixels required for interpolation at regions 2, 3, 4
can be directly measured.

Because edges happen due to abrupt changes in the inten-
sity or brightness of surrounding pixels, they can result in
local maximums in the gradient magnitude of the image. This
phenomenon allows detection of the edges using image signal
processing by finding the local maximums of the gradient of
the image. Conventional edge detection algorithms such as
“sobel,” “prewitt,” “log,” and “roberts” work according to this
principle, and are suitable for use in detecting the local maxi-
mums of the image gradient.

A more advanced edge detection algorithm which works
based on finding and tracking the local maximums of the
gradient is a “canny” edge detector which was developed by
John F. Canny in 1986. The canny edge detector can be used
herein due to its precise detection and location of connected
edges and accordingly more precise recognition of different
aged areas of the display.

The output of the canny edge detector is a binary matrix
with the same size of the original image (i.e., the same size as
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matrix X) in which the edge entries (e.g., local maxima) are
marked by a binary value of one and the rest of the entries in
the binary matrix are zero.

Assuming that the canny edge detector finds the location of
the edges precisely, the location of each edge can still have an
error of at most K, xK,; pixels due to the down-sampling
resolution of the initial interpolation. Three different
approaches can be used to reduce the error.

A coarse or “brute force” approach is to measure all (K, +
Dx(K +1) pixels between the four initial measurements
around the detected edge. When the edge is placed on an
initially measured pixel, the (K, +1)x(K+1) pixels horizon-
tally on the right and vertically below the current pixel (start-
ing from the edge pixel itself) are measured. For example if
K=K =4, there are 25 pixels around the edge pixel that need
to be measured. Because four of them have already been
measured during the initial measurement (and are already in
the set of initial pixel measurements), a total of at most 21
pixels around the detected edge pixel are measured. However,
this approach can result in too many new pixels being mea-
sured without a material reduction of error.

To reduce the number of additional measurements, another
approach measures a total of (K+1) horizontal and (K ,+1)
vertical pixels around the detected edge and between the
coordinates of the adjacent initially measured pixels. When
the edge is placed on an initially measured pixel, the (K +1)
horizontal and the (K, +1) vertical pixels on the right of the
edge pixel and below the edge pixel (including itself) is mea-
sured. Assuming K, =K,=4, a total of at most 10 pixels
around the edge pixel are measured using this approach.

To further reduce the number of additional measurements,
yet another approach measures a total of at most (K +1)
pixels on the right of the edge pixel and a total of at most
(K;+1) vertical pixels below and including the edge pixel.
The measurement can be stopped when the coordinates of a
next initially measured pixel are reached. In this approach, at
most (Kh+1) pixels horizontally and (K +1) pixels vertically
are measured.

Note that in all the above approaches, the new pixels that
are measured can overlap with previously measured pixels
due to the initial measurement or due to the extra measure-
ment for other pixels at edges. These new pixels are skipped
as they have already been measured. The additional pixels
that are measured following the initial interpolation produce
a set of edge measurements.

The new set of measured data now includes the initial pixel
measurements (set of initial pixel measurements) plus the
new measurements at the edges and their vicinity (set of edge
measurements). This new data set is not a grided set of data
because the edges do not necessarily follow a grided pattern.
Thus, a scattered data interpolation technique is used to inter-
polate this new data sethaving an irregular or non-grid pattern
of measured data. The re-interpolation using a scattered data
interpolation results in a more accurate estimation of the
aging pattern with less error compared to the initial interpo-
lation alone.

The performance of the algorithm is evaluated for both
simulated and real data of an AMOLED display. The normal-
ized root mean square (RMS) error percentage is considered
as the performance criterion. If X and X are respectively the
original and the estimated matrices, the normalized error can
be defined as:

norm(X - )A()

norm(X )

(13

E x 100
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It is assumed that the average value of the entries of matrix
X is zero, otherwise it is taken off from every single entry of
the matrix X. This is necessary to highlight the estimation
error. Otherwise, the more is the average value, the less is the
estimation error.

Four different simulated aging patterns respectively called
“chess,” “random intensity chess,” “diamond,” and “random
intensity diamond” can be considered. The goal is twofold at
this stage: 1) to determine a minimum number of measure-
ments for a fixed pattern to achieve a reasonable estimation
error, and 2) to observe the minimum size of the aged areas on
the display in which the algorithm still shows a desirable
performance. The simulated patterns can be added to a back-
ground of real data acquired from an AMOLED display. The
performance of the algorithm is also evaluated in this case

FIG. 2(A) shows a simulated chess aging pattern having a
size 6x10 (black and white blocks) across a display having a
size of 384%x648 pixels. The size of each block in this example
is 64x64 pixels. The initial pixel measurement is performed
with the down-sampling rate of 4x4. FIG. 2(B) shows an
image obtained by a linear interpolation of the measured data
using the down-sampling rate. The normalized RMS estima-
tionerror is 23.1039%. FIG. 2(C) shows the edges detected by
acanny edge detector. Note that the edges can be expanded as
explained before to cover their vicinity. FIG. 2(D) illustrates
the re-interpolated image in which new data at and/or near the
detected edges are taken into account. The normalized RMS
error improves to 1.0551% but at a cost of measuring 17.99%
of all the pixels on the display.

In another example, the initial pixel measurement is per-
formed with the down-sampling rate of 2x3. In this example,
more than 16.6% of all pixels are measured uniformly. This
value is comparable with the obtained from the previous
example as the total percentage of the pixel measurements,
17.99% value. The initial interpolation in this example results
in a normalized RMS error of 14.9986%. This indicates that
the algorithm results in more than a 13% improvement in the
normalized RMS error compared to the case in which almost
the same number of pixels is measured uniformly across the
display.

FIG. 3 shows the results of the same simulation with a
chess aging pattern of size 24x40. In this example, the size of
each block is 16x16 pixels. Notice that the RMS error per-
centage after the initial interpolation is 50.3224%. It
improves to 2.1963% following Canny edge detection and
re-interpolation. This gain is achieved at a cost of measuring
51.26% of all pixels. Consistent with the previous simulation,
it is seen that if the initial down-sampling rate were chosen as
2x1, i.e., when more than half of the pixels are measured
uniformly, the RMS error percentage improves to 24.5427%.
This translates to achieving more than a 22% performance
improvement, which is due to an intelligent choice of pixels
that are measured. As can be seen, the algorithm performs
very well even for a very small size of aged areas (e.g., as
small as 16x16 pixels).

In random intensity chess pattern each of the blocks
chooses a random intensity level from the set {0, 0.1,
0.2,...,1}. FIG. 4 illustrates the performance of the algo-
rithm for an instant of this pattern of size 6x10 blocks. The
simulation procedure is the same as that of the chess pattern.
Note that the average RMS error and the average percentage
of'the total pixel measurement have been shown on the figure.
These values were obtained based on 50 independent runs of
the algorithm. As can be seen, the final average estimation
error is 1.9744%, which is obtained at the cost of 15% average
measurement of all pixels. In contrast, if the original image is
sampled with the down-sampling rate of 2x3 and is linearly
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interpolated, the average RMS error equal to 12.29% is
achieved. Thus, the algorithm provides more than 10% gainin
average compared to a uniform measurement of pixels.

FIG. 5 illustrates the results of the same simulation when a
random intensity chess pattern of size 24x40 is considered.
The final average RMS error is 4.6394%, which is obtained at
the cost of 40.79% average measurement of all pixels. By
contrast, if the original image is sampled by the down-sam-
pling rate of 2x1 and is interpolated, the average RMS error is
19.3118%. Thus, the algorithm provides more than 14% gain
compared to the uniform measurement of pixels. The algo-
rithm also performs very well even for very small size ofaged
areas (as small as 16x16 pixels). Table 1 summarizes the
results for the chess and the random intensity chess aging
patterns.

TABLE 1
Performance of the algorithm for simulated aging patterns
Random Random Int.
Chess Int. Chess Diamond diamond
Pattern size 6x 10 6x 10 6x 10 6x 10
Initial down-sampling rate 4x4 4x4 4x4 4x4
Initial RMS error % 23.1 19.1 11.1 10.1
Total pixel measurement % 18 15 25.03 21.33
Final RMS error % 1.06 1.97 1.23 1.3
Equivalent down-sampling 2%x3 2%x3 2x2 2%x2
rate
Equivalent RMS error % 15 12.29 8.23 7.50
Gain % >13 >10 >7 >6

To verify the performance of the algorithm for edges with
45 and 135 edge direction degrees, a diamond aging pattern
and the random intensity diamond pattern is designed as
shown in FIGS. 6 and 7. The same simulation procedure as
before is performed for both cases. In FIG. 6, the final RMS
error is 1.2276%, which is obtained at the cost of 25.03%
measurement of all pixels. For comparison, if the initial
down-sampling rate equal to 2x2 is chosen, the RMS percent-
age error equal to 8.2349% is obtained. Thus, the algorithm
provides more than 7% improvement in comparison to a
uniform measurement of the pixels.

The algorithm was run 50 times for the random intensity
diamond pattern and the results were averaged. The averaged
final estimation erroris 1.2986%, which is obtained at the cost
ot 21.33% percent measurement of all pixels on average. If
the display is initially sampled with the down-sampling rate
of'2x2 and the resulted data is linearly interpolated, the aver-
age RMS error is 7.5091%. Thus, the algorithm results in
more than 6% improvement compared to a uniform pixel
measurement approach. Table 1 above summarizes the results
for the diamond and the random intensity diamond aging
patterns.

In the following section, the random intensity chess and the
random intensity diamond aging patterns are considered on a
background of initial non-uniformity measured from an
AMOLED display of size 512x648 pixels. FIG. 8 illustrates
the V- initial non-uniformity of this display for Red, Green,
and Blue colors. In these images, those values that are away
from the mean (m) more than 10 times the standard deviation
(0) are considered as false measurements and are replaced by
the mean value. Those that are away from the mean 5 times
the standard deviation are replaced by the boundary values,
m=50. Then the data is filtered out by the 3x3 Gaussian filter
to reduce the effect of the noise and to avoid pixel-by-pixel
variation.
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FIGS. 9,10, and 11 show the performance of the algorithm
for a random intensity chess pattern of size 6x10 with a
background having real initial non-uniformity for red, green,
and blue colors, respectively. The maximum intensity of the
random chess pattern that is added to the initial non-unifor-
mity data is 0.1 times the mean of the initial non-uniformity of

10

and 3.24 percent are obtained respectively for red, green, and
blue colors. By taking the average of the results in both
scenarios, the algorithm herein provides more than 3.9, 5.1,
and 0.15 percent gain for red, green and blue colors compared
to a strictly uniform pixel measurement approach. The results
are summarized in Table 2.

TABLE 2

Performance of the algorithm for the simulated aging patterns with a

background of real initial non-uniformity

Random Intensity Chess Random Intensity diamond
R G B R G B

Pattern size 6x8 6% 8
Initial down-sampling rate 4x4 4x4
Initial RMS error 15.57 11.36 4.83 15.27 10.25 3.93
Total Pixel measurement % 17.12 14.64 17.62 21.52 17.76 19.01
Final RMS error % 9.02 3.95 243 8.22 3.53 2.65
Equivalent down-sampling 2x3 2x2,2x3
rate
Equivalent RMS error % 14.4 10.64 3.58 12.25 8.6 2.8
Gain % >5 >6 >1 >3.9 >5.1 >0.15

the display. This means that the aging process is in an early
stage, and the display is at most 10% aged compared to its
original condition. The average RMS errors equal to 9, 3.95,
and 2.43 percent are obtained at the cost of total 17.12, 14.64,
and 17.62 percent measurement of all pixels on average
respectively for red, green, and blue colors. To obtain the
actual value of the performance improvement for each color,
initial measurements of the display with a down-sampling
rate of 2x3 were taken, which means that more than 16.6% of
the pixels are measured uniformly. In this case, the average
RMS errors equal to 14.7, 10.64, and 3.58 percent are
obtained respectively for red, green, and blue colors. This
translates to more than 5%, 6%, and 1% performance
improvement respectively. The results are summarized in
Table 2 below.

FIGS. 12-14 show the performance of the algorithm for a
random intensity diamond pattern with a background having
real initial non-uniformity respectively for red, green, and
blue colors. Like previous simulations, the maximum inten-
sity of the random diamond pattern that is added to the initial
non-uniformity data is 0.1 times the mean of the initial non-
uniformity of the display. Thus, the aging process is in an
early stage, and the display is at most 10% aged compared to
its original condition. The average RMS errors equal to 8.2,
3.5, and 2.65 percent are obtained at the cost of total 21.52,
17.76, and 19.01 percent measurement of all pixels on aver-
age respectively for red, green, and blue colors.

To obtain the actual value of the performance improvement
for each color, two different scenarios of uniform pixel mea-
surement are considered, and the average of the results is
taken. In the first scenario, the pixels are uniformly measured
with the down-sampling rate equal to 2x2. This means that
more than 25% of the pixels are initially measured. Note that
this number is much larger than the number of pixels mea-
sured using the algorithm for each color. The average RMS
errors equal to 10, 7.24, and 2.34 percent are obtained respec-
tively forred, green, and blue colors. Even in this scenario, the
algorithm provides more than 1.8 and 3.5 percent gain for the
red and green colors. The results for the blue color are very
close. In another scenario, the initial down-sampling rate of
2x3 is chosen, which means that more than 16.6% of the
pixels are measured. The averaged RMS errors 0f 14.15,9.97,

25

40

45

The performance of the algorithm improves as the aging
becomes more severe. In such a case, the edges are sharper
and hence more vulnerable to be detected. In addition, assum-
ing highly spatially correlated aged areas, most of the estima-
tion error due to interpolation happen at the edges and their
vicinity. Thus, pixel measurement at edges is more effective
to reduce the estimation error. In general, the algorithm shows
its best performance when it deals with highly spatially cor-
related areas with distinctive edges.

The algorithm herein includes an initial uniform pixel mea-
surement and interpolation followed by an edge detection
algorithm to recognize the areas that results in most part of the
estimation error due to the interpolation. The pixels on the
edges and their vicinity are also measured and aging pattern
of'the display is obtain by re-interpolation of the entire mea-
sured set of data for the initially measured pixels and the
pixels around the detected edges. Numerical results on simu-
lated aging patterns and real data demonstrate that the algo-
rithm significantly outperforms the equivalent uniform pixel
measurement counterpart. The algorithm performs particu-
larly well for aging patterns that consist of highly spatially
correlated areas with distinctive edges.

The simulation results presented here for real data are
obtained based on only one set of real V ,initial non-unifor-
mity. More exact results are obtained by performing the same
simulation for various sets of real data and averaging over the
results.

There is a tradeoff in the choice of the initial down-sam-
pling rate. It should be large enough to decrease the total
number of pixel measurements as much as possible. At the
same time, it should be small enough to capture important
events (e.g., edges or corner points) of the image with a high
probability. Clearly, if an edge is missed in the initial inter-
polation, it is not guaranteed to be recovered by the algorithm.
Thus, edges that are expanded in an area smaller than the
smallest area characterized by the down-sampling rate (K,x
K, pixels), are vulnerable to be missed.

What is claimed is:

1. A method of identifying on a display having pixels that
are aging due to shifts in one or more aging characteristics of
a current-driven component in each of the pixels, comprising
the acts of:
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measuring, using a measurement circuit, an aging charac-
teristic of at least some but not all pixels in at least a first
region of the display using a down-sampling rate of
K;xK,;, such that the aging characteristic of at least
every K th pixel is measured along a column of the first
region and the aging characteristic of at least every K, th
pixel is measured along a row of the first region, to
produce a set of initial pixel measurements, each of the
pixels including a light emitting device,

where K and K, are positive integers that are identical or

mutually distinct;

interpolating the set of initial pixel measurements to pro-

duce an initial aging pattern for at least the first region;
storing, in a memory device, the initial aging pattern;
locating in the initial aging pattern using an edge detection
algorithm an edge corresponding to a discontinuity in
pixel intensity;

measuring, using the measurement circuit, the aging char-

acteristic of those of the pixels along the located edge in
the initial aging pattern that were not measured in the
initial set of pixel measurements to produce a set of edge
measurements;

producing a refined aging pattern of at least the first region

based on the set of initial pixel measurements and the set
of' edge measurements;

storing an indication of the refined aging pattern in the

memory device, wherein the indication of the refined
aging pattern is an estimation matrix corresponding to a
pixel resolution of the display, and

updating the estimation matrix to improve an image uni-

formity of the light emitting devices across the display.

2. The method of claim 1, further comprising:

if the aging characteristic of the pixel located in the last

column and in the last row of the display has not been
measured so as to be absent from the set of initial pixel
measurements, additionally measuring, using the mea-
surement circuit, the aging characteristic of the pixel
located in the last column and in the last row of the
display defined as a fourth region, and including these
additional measurements from the fourth region in the
set of initial pixel measurements.

3. The method of claim 1, further comprising:

further measuring, using the measurement circuit, the

aging characteristic of at least some of the K, pixels
horizontally and at least some of the K, pixels vertically
from the located edge to produce a set of additional edge
measurements; and

adding the set of additional edge measurements to the set of

edge measurements, wherein the applying the scattered
interpolation algorithm is further based on the set of
additional edge measurements.

4. The method of claim 3, wherein the further measuring
includes measuring the aging characteristic of at least every
unmeasured pixel defined by a block having a size of at least
(Kg+D)x(K;A+1), around the located edge and between the
coordinates of adjacent pixels in the set of initial pixel mea-
surement, and including these further measured pixels in the
set of additional edge measurements.

5. The method of claim 3, wherein the further measuring
includes measuring the aging characteristic of at least every
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one of the horizontal (K,+1) unmeasured pixels around the
located edge located on the same row as the located edge and
of atleast every one of the vertical (K, +1) unmeasured pixels
located on the same column as the located edge and between
the coordinates of adjacent pixels in the set of initial pixel
measurements, and including these further measured pixels in
the set of additional edge measurements.

6. The method of claim 3, wherein the further measuring
includes measuring the aging characteristic of at least every
one ofthe next K, unmeasured pixels located on the same row
following an initial pixel along the located edge and of at least
every one of the next K, unmeasured pixels located on the
same column following the initial pixel and including these
further measured pixels in the set of additional edge measure-
ments.

7. The method of claim 6, further comprising stopping the
further measuring when an already measured pixel from the
set of initial pixel measurements is encountered along the row
or the column of the initial pixel.

8. The method of claim 1, wherein the pixel resolution
corresponds to a number N of rows and a number N, of
columns of pixels forming the display.

9. The method of claim 8, wherein each value in the esti-
mation matrix corresponds to an amount by which the pixel
corresponding to the row and the column where the value
appears in the matrix is aging such that a compensation value
is applied to increase a programmed brightness for the pixel to
compensate for the aging amount.

10. The method of claim 1, wherein the aging characteristic
is related to a shift in a threshold voltage of a drive transistor
that drives a light emitting device in each of the pixels, or a
change in a voltage across the light emitting device in each of
the pixels, or a change in a drive current of the drive transistor
needed to cause the light emitting device in each of the pixels
to emit a programmed brightness, or a change in a current of
the light emitting device needed to emit a programmed bright-
ness.

11. The method of claim 1, wherein each of the pixels
includes a light emitting device and a drive transistor that
drives the light emitting device with a current corresponding
to a programmed brightness emitted by the light emitting
device.

12. The method of claim 1, wherein the first region spans
the entire display.

13. The method of claim 1, wherein the first region is one of
four disjoint regions that together span the entire display.

14. The method of claim 1, wherein the interpolating the set
of'initial pixel measurements estimates aging values of pixels
that were not measured due to the down-sampling rate.

15. The method of claim 1, wherein the edge detection
algorithm is a Canny edge detection algorithm.

16. The method of claim 1, wherein K ;-is 2 or 4 or any other
positive integer value.

17. The method of claim 16, wherein K, is 2, 3, or 4 or any
other positive integer value.

18. The method of claim 1, wherein no more than 50% of
all the pixels in the display are measured to produce the initial
aging pattern or no more than 25% of all the pixels in the
display are measured to produce the initial aging pattern.
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